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Abstract. General aspects of symmetry reductions of topological/cohomological Yang–Mills
theories are discussed. It is shown that cohomological quantum field theories associated with the
Nahm equations can be derived from the Donaldson–Witten theory by a symmetry reduction with
respect to a three-dimensional Abelian group.

1. Introduction

Supersymmetric Yang–Mills theories have appeared in the study of Dirichlet p-branes, or
D-branes, which have been useful in the description of non-perturbative behaviour of string
theory [1–3]. It is known that the low-energy description of n D-branes in flat space can
be obtained via the dimensional reduction of (Euclidean) D = 10, N = 1 super-Yang–Mills
(SYM) systems top+1 dimensions [1–5]. Such supersymmetric theories have also been related
to special types of theories, the topological or cohomological quantum field theories [6–14],
which arise in a twisted form in the study of the moduli spaces of solutions of certain (nonlinear)
equations such as the (anti-)self-dual Yang–Mills (SDYM) equations.

The moduli space of (anti-)SDYM equations in four dimensions is known to be described
in terms of topological invariants (polynomials) through a quantum field theoretic system
related to twisted D = 4, N = 2 SYM theories [15–20]. It has also been shown that the
Seiberg–Witten equations (or Abelian monopole equations [20–23]) lead to a description of
the Donaldson invariants. A generalization to non-Abelian monopole equations via the addition
of coupled N = 2 hypermultiplet matter [24, 25] has been achieved and includes the above
formulations (see also [26]). Higher-dimensional formulations of SDYM equations have been
written [27–30]. For some of them, it has been found that their moduli space is probed by
cohomological quantum field theories (cf, for example, [8–10]). Topological/cohomological
field theories have also been useful in recent different works (cf, for example, [11, 12]).

Dimensional reductions of the Donaldson–Witten theory have been carried out to generate
topological field theories in three dimensions [31, 32] including as a limit the SO(3) Georgi–
Glashow model, as well as in two dimensions [33] with the Teichmüller space of compact
Riemann surfaces as moduli space. The dual theory associated with the Seiberg–Witten
equations has also been dimensionally reduced to Abelian theories in dimensions two and
three [34,35] which are believed to be dual to the corresponding above-mentioned dimensional
reductions of the Donaldson–Witten theory.
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Higher-dimensional cohomological field theories can be similarly reduced [8–10]. For
instance, an eight-dimensional cohomological field theory [8] is related to a twisted version of
D = 4, N = 4 SYM theory which is associated with non-Abelian Seiberg–Witten equations.
Intermediate-dimensional reductions have also been considered leading to cohomological
theories in dimensions 4–7. A different type of reduction has been attempted to retrieve two-
dimensional theories by allowing a splitting of a four-dimensional spaceM into the (Cartesian)
product of two Riemannian surfaces: M = 
 × C, and by letting the metric of one of the
surfaces vanish through scaling (i.e. as in compactification) [36,37]. For instance, under certain
restrictions, one is led to supersymmetric σ -models on the moduli space of flat connections
on C (for N = 2) or on the Hitchin space (for N = 4). Compactifications of N = 4 twisted
SYM theories are also discussed in [38].

In terms of the field content of a quantum theory, the procedure of dimensional reduction
consists mainly, for each subtracted dimension, in eliminating one natural coordinate and then
ignoring any dependence of the field variables with respect to this coordinate [8]. Dimensional
reduction of topological or cohomological field theories is equivalent to choosing a Euclidean
metric, reducing by translations along the coordinate to be ignored, and bringing the action to
a covariant form (restricting to the allowed metrics if necessary) [10]. Such reductions to two
and three dimensions of the Donaldson–Witten theory have been mentioned already. However,
a further reduction of the Donaldson–Witten theory to dimension 1 could be attempted by
electing a Euclidean metric or any metric which is invariant under a set of three orthogonal
translations with suitable boundary conditions. With a specific choice of gauge (for instance
axial) and for Euclidean space, the SDYM equations probed will be reduced to the well known
Nahm equations [39], with a corresponding topological quantum mechanical system to be
shown later in this paper.

More generally, given a topological or cohomological theory and a choice of metric,
reductions by certain subgroups of the invariance group of the system, for example isometries,
can also be explored. As for reductions by translational symmetries, a covariant description
can be sought, up to allowed metrics for restricted cohomological cases. It is hoped to find
cohomological field theories which would probe the moduli space of reduced systems of
equations of interest.

In what follows, section 2 provides a short reminder of cohomological quantum field
theories, and aspects of the symmetry reduction of topological/cohomological field theories
are discussed. Section 3 presents examples of reduction with respect to subgroups including
rotational symmetries of the Donaldson–Witten theory and a cohomological field theory in
higher dimensions. Then, the reduction of the Donaldson–Witten theory to a topological
quantum mechanical theory, which should probe the moduli space of the Nahm equations, and
a set of deformed versions are shown in section 4. Section 5 includes a summary and possible
developments.

2. Reduction

Let us recall some general aspects of topological quantum field theories (TQFTs) and
simultaneously set our notation. A TQFT of the Witten type (or cohomological type) [20]
is described by a partition function (Z):

Z =
∫

d� e−Sq (2.1)

where � denotes the even and odd dynamical fields, ghosts, anti-ghosts and multiplier fields.
All fields are defined on a Riemannian manifold M of dimension n with metric g. The
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quantum action Sq is determined by a BRST operator Q (assumed to be metric independent)
and a functional V (�, g) according to

Sq = {Q,V (�, g)}. (2.2)

Physical states correspond to Q-cohomology classes.
Under metric variations δg, the quantum action obeys

δgSq = {Q, δgV } = 1
2

∫
M

dnx
√
gTαβδg

αβ (2.3)

where

Tαβ = {Q,Vαβ(�, g)} := {Q, δV/δgαβ}. (2.4)

Assuming no metric anomalies, the variation of the partition function with respect to the metric
vanishes because δgS is Q-exact:

δgZ = 〈δgSq〉 = 〈{Q, δgV }〉 = 0. (2.5)

Moreover, for a general operator O,

δg〈O〉 = 〈δgO − OδgSq〉. (2.6)

Hence, the variation vanishes non-trivially forQ-cohomology classes of operators O satisfying
δgO = {Q, Õ} for some operator Õ. This metric independence is the hallmark of TQFTs.

Closely related to TQFTs are what will be called below cohomological quantum field
theories (CQFTs). As with TQFTs, CQFTs are defined by the cohomology of a BRST
operator: however, they are not necessarily independent of the metric on the target manifold.
Consequently, a CQFT is best characterized by its Q-cohomology.

If a set of operators O(0),O(1), . . . ,O(n), satisfy a set of topological descent equations

0 = {Q,O(0)}; −dO(0) = {Q,O(1)}; . . . ; −dO(n−1) = {Q,O(n)}; −dO(n) = 0 (2.7)

then it is well known that BRST invariant observables can be obtained by arbitrary products
of the following BRST invariant operator functionals:

W(i)(γ ) =
∫
γi

O(i) (2.8)

where γi is any i-cycle in homology, and i � n.
Now, within the context of a TQFT/CQFT, let us suppose that there exists an invariance

symmetry group T acting on M through the map σ : T ×M → M . T -invariant gauge fields
Aµ, or connections (ω = Aµθ

µ, with co-frame basis θµ, µ = 1, . . . , n), are required to respect
the following global invariance conditions [41, 42]:

σ ∗
t ω = Adρ−1(t, x)ω + ρ−1(t, x)dρ(t, x) (2.9)

where t ∈ T , x ∈ M , and ρ : T ×M → H (gauge group) is a transformation function which
characterizes the lift of the σ -action to the gauge bundle.

If the transformation function ρ(t, x) = Z(H), where Z(H) denotes the centre ofH , the
invariance condition becomes locally [40–43]:

LXtω = 0 (2.10)

where LXt stands for the Lie derivative with respect to the vector field Xt which corresponds
to the element of the Lie algebra associated with the group element t ∈ T . Nevertheless, if
the curvature F of the connection ω is nonvanishing and span a two-dimensional subspace of
)2(T ∗M) at x ∈ M , then the most general invariant generic gauge field (or connection) can
be identified as irreducible at x for transitive actions on M if the image of the homorphism
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λ∗ : To → H, from the isotropy subalgebra To at x to the gauge algebra H, vanishes. This
result follows from the compatibility of the (local) irreducibility equation: Dµξ = 0. The
strict invariance [41,42] of a gauge field (from a trivial lift of the gauge symmetry group action
to the gauge bundle) is in general an indication of the presence of an irreducible gauge field
(h−1Aµh + h−1∂µh = Aµ, provided h ∈ Z(H)).

If the infinitesimal invariance of any field φ of the set � under the action of any element
t ∈ T satisfies the equation

δtφ = 0 (2.11)

and if the BRST (Q) transformation can be written in terms of a function f of the set of fields
� with possibly their first-order derivatives

δQφ = f (�, ∂µ�) (2.12)

it then follows that

[δt , δQ]φ = 0 (2.13)

for any φ ∈ � and t ∈ T if

δtf (�, ∂µ�) = 0. (2.14)

We note that (2.14) holds for a T -invariant BRST charge, i.e. for δtQ = 0.
The presence of linear derivative terms in (2.12) restricts symmetries allowing reduced or

residual BRST transformations. For these terms, the vanishing commutator,

[Xt, ∂µ]� =
∑
α

F α(x)Xt̃α� = 0 ∀µ (2.15)

has to be satisfied in order to fulfil the above condition (2.14) on f (�, ∂µ�). Here, t̃α is any
element of T and could vary for different t . Fα(x) are functions of the independent coordinates
with α � (dimension of the symmetry algebra T ). Equivalently, it could be stated that the
algebra of translations generated by {∂µ} has, modulo the symmetry algebra, to commute with
the symmetry algebra.

Relation (2.13) implies the existence of a residual BRST transformation on the set of
T -invariant �. Therefore, the quantum action has to be T -invariant:

δtSq = {Q, δtV } = 0. (2.16)

Accordingly, assuming no T -symmetry anomaly, the topological invariant 〈O〉 is also T -
symmetric:

δt 〈O〉 = 〈δtO − OδtSq〉 = 0 (2.17)

for any t ∈ T .
Using the T -invariant fields �R and BRST charge QR , a reduced partition function ZR

can be defined:

ZR =
∫

d�R e−SRq (2.18)

where SRq is the reduced quantum action such that

SRq = {QR, V R(φR, gR)} (2.19)

for the reduced metric gR and functional V R , with an integration over the manifold spanned
by the T -invariant independent variables. These definitions involve residual fields and also
allow us to find reduced operators, or observables, denoted OR , as well as possibly nontrivial
topological invariants 〈OR〉.
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A correspondence with the topological invariants 〈O〉 can be described via a relation
between the reduced fields �R , their complements in the space of fields, denoted by �⊥,
and the original set of fields �. Let us suppose that there is a well defined transformation
� = �(�̃), where �̃ stands for the complete set of fields (�R,�⊥). Then, the topological
invariants can be written as

〈O〉 =
∫

d�̃

∣∣∣∣sdet

(
δ�

δ�̃

)∣∣∣∣ e−Sq(�(�̃)). (2.20)

When ‘sdet’ is independent of the reduced fields �R , one can write

〈O〉 =
∫ ∣∣∣∣sdet

(
δ�

δ�̃

)∣∣∣∣ d�⊥〈OR〉. (2.21)

To conclude this section, the reduction of a TQFT/CQFT, with respect to a suitably
restricted invariance symmetry group, leads to a new TQFT/CQFT with a T -invariant BRST
charge and T -invariant fields defined on a reduced manifold. The allowed reductions include
dimensional reduction, but more general reductions are possible.

3. Examples

In this section, for simplicity, we consider the Donaldson–Witten theory on a manifold with
the Euclidean group as isometry group. An example of reduction involving a subgroup of the
Euclidean group is presented.

It is known that the Donaldson–Witten theory can be derived using the Langevin approach
starting with the classical action (Sc) [18]

Sc = 1
2

∫
M4

d4x
√
g tr(Gαβ − F +

αβ)
2 (3.1)

where F +
αβ = 1

2 (Fαβ + 1
2εαβµνF

µν). Subsequent application of the Batalin–Vilkovisky method
leads to the following complete quantum action (Sq):

Sq = − 1
4

∫
M4

d4x
√
gFαβF̃

αβ + {Q,V } (3.2)

where

V =
∫
M4

d4x
√
gχαβ

(
F +
αβ − α

2
Bαβ

)
+ φ̄(Dαψ

α) + c̄(∂αA
α). (3.3)

The gauge choices elected in the above quantization are

∂αAα = 0 Dαψ
α = 0 and Gαβ = 0. (3.4)

The complete set of off-shell nilpotent BRST transformations is given by [18]

{Q,Aα} = Dαc + ψα {Q,ψα} = −[c, ψα] −Dαφ {Q,φ} = −[c, φ]
{Q,χαβ} = Bαβ {Q,Bαβ} = 0 {Q, φ̄} = η

{Q, c} = − 1
2 [c, c] + φ {Q, c̄} = b {Q, η} = 0 {Q, b} = 0.

(3.5)

Upon reduction with respect to a subalgebra of the isometry algebra spanned by the
basis {P3 = ∂3, P4 = ∂4,M34 = (x3∂4 − x4∂3)}, a residual action corresponding to a two-
dimensional topological Yang–Mills theory [44] is obtained by substitution of the invariant set
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of fields:

Aα = (A1(x
1, x2), A2(x

1, x2), 0, 0) ψα = (ψ1(x
1, x2), ψ2(x

1, x2), 0, 0)
c = c(x1, x2) φ = φ(x1, x2)

c̄ = c̄(x1, x2) b = b(x1, x2)

η = η(x1, x2) φ̄ = φ̄(x1, x2)

χ12(x
1, x2) = −χ21(x

1, x2) = χ34(x
1, x2) = −χ43(x

1, x2) otherwise 0
B12(x

1, x2) = −B21(x
1, x2) = B34(x

1, x2) = −B43(x
1, x2) otherwise 0.

(3.6)

They provide the reduced off-shell BRST transformations:

{Q,Am} = Dmc + ψm {Q,ψm} = −[c, ψm] −Dmφ {Q,φ} = −[c, φ]

{Q,χmn} = Bmn {Q,Bmn} = 0 {Q, φ̄} = η

{Q, c} = − 1
2 [c, c] + φ {Q, c̄} = b {Q, η} = 0 {Q, b} = 0

where the indices m, n = 1, 2.
As further illustration, the D = 8 CQFT of [8] could be reduced under a subgroup of

the Euclidean isometry group associated with the subalgebra {P7 = ∂7, P8 = ∂8,M78 =
(x7∂8 − x8∂7)}. This would lead to a six-dimensional BRST invariant action. In a manner
similar to the previous example, the invariant fields would be substituted in the original
action and BRST transformations. The invariant self-dual (antisymmetric) field χαβ obeys
the octonionic related equations

χ8a = 1
2cabcχbc (3.7)

where the cabc, a, b, c = 1, . . . 7, correspond to the octonionic structure constants [8, 27]. A
further reduction to four dimensions could also be carried out by imposing the invariance of
the six-dimensional fields with respect to the subgroup with algebra basis {P5 = ∂5, P6 =
∂6,M56 = (x5∂6 − x6∂5)}.

In the above two reductions from eight dimensions, the residual covariance is SO(6) and
SO(4) respectively. The residual holonomy is determined by the subgroup of SO(6) (resp.
SO(4)) preserving the Spin(7) invariant antisymmetric tensor, Tµνρσ = ηT γ µνρσ η, where
γ µνρσ is the completely antisymmetric product of the γ matrices associated to SO(8), and η
is the covariantly constant spinor field normalized to unity leading to a division of the space
of chiral real majorana spinors on M8. For the four-dimensional reduction, the Tµνρσ tensor
is easily found to be reduced to the usual SO(4) invariant completely antisymmetric tensor.

The residual equations probed are obtained from the octonionic equations,

F8a = 1
2cabcFbc (3.8)

by inserting the vanishing components of the invariant Fµν in equation (3.8). It can be verified
that the D = 4 SDYM equations are left after reduction with respect to the subgroup with
algebra spanned by {P5, P6, P7, P8,M56,M78}.

In the following section, a more detailed example of reduction related to integrable systems
is presented.

4. Nahm equations

The Nahm equations are known to arise as a set of equations whose solutions provide the
monopole solutions, when endowed with suitable boundary conditions [45–47]. Explicit
solutions have been reported in a number of papers (see [47–49] and [50], as well as references
therein for examples). They involve, in general, theta functions of curves of high genus. The
Nahm equations have been encountered in the study of D-branes in D = 4, N = 4 SYM
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theory [51], and higher-dimensional generalizations have also been found in relation with
higher-dimensional SDYM equations (see [8, 52] for examples).

As mentioned previously, and similarly to a dimensional reduction, the Donaldson–
Witten theory has been reduced by one-and two-dimensional translational symmetry groups to
derive three- and two-dimensional TQFTs respectively, which correspondingly would describe
reduced SDYM equations solution sets. A natural extension is to effect a reduction of the
Donaldson–Witten theory under a three-dimensional group of translations.

However, let us recall that the gauge of the fields Aµ and ψµ for the previous reductions
to two and three dimensions were chosen to satisfy

∂µA
µ = 0 and Dµψ

µ = 0. (4.1)

For the three-dimensional reduction, the (gauge) condition for the field ψµ is kept, but instead
of the Lorentz gauge, an axial gauge, A4 = 0, will be selected for the gauge field Aµ (see
also [53]). Such a gauge has already been used in the reduction of the Donaldson–Witten
theory to Floer theory [15, 18], as well as in its Nicolai map interpretation [54].

The reduced BRST transformations under the subgroup of the isometry group of Euclidean
space in four dimensions generated by {P1, P2, P3}, where Pi denotes the generator of
translations along the coordinate xi , have the form [18]:

δAi = −ε([Ai, c] + ψi) δA4 = −ε(D4c + ψ4)

δψi = ε([Ai, φ] + {c, ψi}) δψ4 = ε(D4φ + {c, ψ4})
δc = ε(−φ + 1

2 {c, c}) δφ = ε[c, φ]

δχαβ = εB ′
αβ δB ′

αβ = 0
δc̄ = −εb δb = 0
δφ̄ = −εη, δη = 0
δGij = ε([c,Gij ] − 1

2 [Ai, ψj ] + 1
2 [Aj ,ψi] − 1

4εijk([Ak,ψ4] −D4ψk) + [φ, χij ])
δGi4 = ε([c,Gi4] − 1

2 [Ai, ψ4] + 1
2D4ψi − 1

2εijk[Aj ,ψk] + [φ, χi4])

(4.2)

which share nilpotency off-shell, where δ = −ε{Q, }.
Using symmetry reduction on the action (cf [18]), the {P1, P2, P3} subgroup reduction

leads to the residual quantum action

Sq =
∫

dx4 tr{Q,χαβ
(
F +
αβ − α

2
Bαβ

)
+ c̄ηαA

α + φ̄Dαψ
α}. (4.3)

ObservablesWl [15,18] are l-forms on the four-dimensional manifold, which are reduced
to 0- and 1-forms on R or S1:

0-forms 1-forms
W0 = 1

2 tr(φ2) 0

W1i = tr(φψi) W14 = tr(φψ4)

W2ij = − tr(ψiψj − φFij ) W2i4 = − tr(ψiψ4 − φFi4)

W3ijk = 1
9 tr(ψkFij + cyclic) W3ij4 = 1

9 tr(ψ4Fij + cyclic)
0 W44 = 4

3 tr(εijkFijFk4)

(4.4)

where the indices i, j, k = 1, 2, 3. They satisfy the following BRST transformation relations
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(or topological descent equations):

0-forms 1-forms

{Q,W0} = 0

{Q,W1i } = 0 {Q,W14} = −dW0

{Q,W2ij } = 0 {Q,W2i4} = −dW1i

{Q,W3ijk } = 0 {Q,W3ij4} = −dW2ij

{Q,W44} = −d(εijkW3ijk )

0 = dW44 .

(4.5)

Their integration over corresponding 0- and 1 homology cycles on R or S1 allow to find
functionals which constitute topological invariants:

W(0)
α (γ ) =

∫
γ

W(0)
α and W(1)

α (γ ) =
∫
γ

W(1)
α (4.6)

where W(0)
α , and W(1)

α stand respectively for 0- and 1-forms on R or S1 defined by
equations (4.4).

Similarly to the four-dimensional case, nontrivial residual observables could lead to
topological invariants [15, 18].

Recall that the gauge groups of rank �2 can also be considered, but the presence of
reducible gauge connections poses difficulties [15, 16, 23, 56].

These observables and topological invariants could also be well defined and nontrivial for
‘deformed’ forms of the Nahm equations, which are generated through a metric background
depending only on the invariant variable (x4) with respect to the action of the subgroup
associated with the basis algebra {P1, P2, P3}. For a given background metric gwith e = √|g|,
the (anti-)SDYM equations have the form

Fµν +
e

2
εµνλσ g

λλ′
gσσ

′
Fλ′σ ′ = 0. (4.7)

If g = g(x4), their reduction under the symmetry group of translations spanned by {P1, P2, P3}
will produce a set of coupled ODEs which can be called ‘deformed’ Nahm equations.

The moduli space of these new equations would be related to the correspondingly reduced
Donaldson–Witten theory under the same translational symmetries. For example, if the metric
chosen is diagonal:

g =
4∑
i=1

gii(x
4)(dxi)2 (4.8)

the reduction of the ‘curved’ (anti-)SDYM equations (4.7) can be written as

(eg11g44)∂4A1 = [A2, A3]
(eg22g44)∂4A2 = [A3, A1]
(eg33g44)∂4A3 = [A1, A2].

(4.9)

One might then wonder if a similar reduction via translations of the Abelian monopole
equations and their quantum field theoretical equivalent would provide a dual description of
the above systems.

5. Conclusion/summary

In the above, the reduction by symmetry of topological/cohomological Yang–Mills theories
in different dimensions was considered. It has been shown that reduction under certain
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symmetries, which can be more general than translations, allow the preservation of
cohomological characteristics of the original system. A few examples of reduction from
known cohomological models were considered, as well as a particular reduction under three-
dimensional translational symmetries of the Donaldson–Witten theory related to an integrable
system: the Nahm equations. A quantum system with residual BRST transformations, which
could explore the moduli space of the Nahm equations, and some deformed cases have been
given.

Future research could explore the reduction of the (non-)Abelian monopole equations and
the determination of dual descriptions to the residual systems. Different TQFTs associated
to other self-duality equations could also be investigated, as well as their moduli spaces.
The reduction of the Donaldson–Witten theory to TQFTs linked to other integrable systems
of dimension 1, 2, or 3 derivable from the reduction of SDYM equations could be sought.
Finally, one could search for an interpretation of these reduced theories within the Mathai–
Quillen formalism; and other TQFTs, such as two-dimensional gravity, could be explored.
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